Abstract

ABSTRACTCarbon nanotubes (CNTs) have taken precedence over activated carbon in various applications where adsorption is the primary process. The adsorption of chemical compounds by CNTs and activated carbon is most often predicted through linear free energy/solvation energy relationships (LFERs/LSERs). This work proposes quantum-mechanical LSER models based on a combination of quantum-mechanical descriptors and solvatochromic descriptors of LSERs for predicting the adsorption of aromatic organic compounds by activated carbon at varying adsorbate concentrations. The models are validated using state-of-the-art procedures employing an external prediction set of compounds. This work reveals the hydrogen bond donating and accepting ability of compounds to be the most influencing – but a negative – factor in the adsorption process of activated carbon. The quantum-mechanical LSERs proposed in this work are analysed and found to be equally reliable as the existing LSERs. These were further used to predict the adsorption of nucleobases, steroid hormones, agrochemicals, endocrine disruptors and pharmaceutical drugs. Notably, agrochemicals and endocrine disruptors are predicted to be adsorbed more strongly by activated carbon when compared with their adsorption by CNTs. However, quantum-mechanical LSERs predict the adsorption strength of biomolecules on activated carbon to be similar to that on the CNTs, which can be used to assess the risk associated with using carbon materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.