Abstract

We present a theory of time-and-energy-resolved photoluminescence (PL) from semiconductors excited by femtosecond laser pulses. Our approach combines quantum kinetics of hot-carrier relaxation and quantum theory of spontaneous emission, under consistent inclusion of Coulomb interaction. Model calculations show the transition from PL at the pump frequency towards excitonic PL within a few picoseconds. For intermediate times, we predict hot luminescence to be a sensitive tool to study the electron-lattice interaction. Finally, we extend the theory to the description of photoluminescence excitation (PLE) experiments, and we reinvestigate from first principles the assumption of equivalence between PLE and absorption spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.