Abstract
Theory has shown [1] that the quantum enhancements afforded by squeezed-vacuum injection (SVI) and phasesensitive amplification (PSA) can improve the spatial resolution of a soft-aperture, homodyne-detection laserradar (ladar) system. Here we show they can improve the range resolution of such a ladar system. In particular, because an experimental PSA-enhanced system is being built whose slow photodetectors imply multi-pulse integration, we develop range-measurement theory that encompasses its processing architecture. We allow the target to have an arbitrary mixture of specular and speckle components, and present computer simulation results demonstrating the range-resolution improvement that accrues from quantum enhancement with PSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.