Abstract

We investigate the room-temperature quantum-confined Stark effect in Ge/SiGe multiple quantum wells (MQWs) grown by low-energy plasma-enhanced chemical vapor deposition. The active region is embedded in a p-i-n diode, and absorption spectra at different reverse bias voltages are obtained from optical transmission, photocurrent, and differential transmission measurements. The measurements provide accurate values of the fraction of light absorbed per well of the Ge/SiGe MQWs. Both Stark shift and reduction of exciton absorption peak are observed. Differential transmission indicates that there is no thermal contribution to these effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.