Abstract

With the aim of searching for promising anode materials for lithium-ion batteries, quantum-chemical modeling of the introduction of lithium into a silicon layer supported by nitrogen-doped silicon carbide at Li: Si ratios of 1: 1, 2: 1, and 3: 1 has been performed by the density functional theory method with inclusion of gradient correction and periodic boundary conditions. It has been demonstrated that the absorption of lithium by silicon is energetically more favorable than the formation of a metal layer on the silicon surface. As the lithium concentration increases, the energy difference decreases; i.e., the introduction of lithium into silicon becomes increasingly less favorable, the network of silicon atoms is broken down into smaller and smaller pieces, while the layer thickness increases threefold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.