Abstract

In this paper, for the human occupied vehicle (HOV) system, the control strategies are used to reallocate the thruster forces based on quantum-behaved particle swarm optimization (QPSO). QPSO is adopted in terms of the solution quality, robustness and the convergence property. When the normalized thruster forces are out of maximum limits, the QPSO is used for the restricted usage of the faulty thruster and to find the solution of the control reallocation problem within the limits. An optimization criterion with the infinite norm as the cost function is introduced into the QPSO algorithm accelerate the search for the optimal solution in the feasibility space so as to ensure the feasibility of the solution. To show the efficiency of QPSO fault-tolerant control, GA, PSO and pseudo inverse method were conducted to study the proposed fault-tolerant control method. Experimental results showed the proposed fault-tolerant method could reallocate the thruster forces effective after thruster fault.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call