Abstract
In Nature, 570, 200 (2019), Minev and co-authors’ experiment shows how to deterministically “catch and reverse a quantum jump mid-flight” in a continuously-observed Rabi-stimulated qubit. Its interpretation is in debate (La Recherche, 555, 40, (2020)). We show that the quantum Zeno effect (QZE) of continuous measurement —by use of photon emission from a 3rd high-rate monitored ancilla level— can be described by an action-angle canonical transformation of the original Hamiltonian dynamical system (HDS) theory of QZE. Then energy whose mean value yields the well-known resonant Rabi harmonic dynamics is actually defined by large-amplitude high-frequency oscillations of the internal as well as of the overall phase of the two-level system. By making use of their standard deviation, we show that the separatrix crossing of the HDS trajectory yields the quantized action nh where n = 1, 2, 3 .... Therefore, the jump dynamics observed in Minev et al. experiment belongs to a series of discrete quantum jumps: it corresponds in this experiment to n = 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in Theoretical & Computational Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.