Abstract
Photolysis of nitrate (NO3-) produces reactive nitrogen and oxygen species via three different channels, forming: (1) nitrogen dioxide (NO2) and hydroxyl radical (•OH), (2) nitrite (NO2-) and oxygen atom (O(3P)), and (3) peroxynitrite (ONOO-). These photoproducts are important oxidants and reactants in surface waters, atmospheric drops, and snowpacks. While the efficiency of the first channel, to form NO2, is well documented, a large range of values have been reported for the second channel, nitrite, above 300 nm. In part, this disagreement reflects secondary chemistry that can produce or destroy nitrite. In this study, we examine factors that influence nitrite production and find that pH, nitrate concentration, and the presence of an •OH scavenger can be important. We measure an average nitrite quantum yield (Φ(NO2-)) of (1.1 ± 0.2)% (313 nm, 50 μM nitrate, pH ≥ 5), which is at the upper end of past measurements and an order of magnitude above the smallest-and most commonly cited-value reported for this channel. Nitrite production is often considered a very minor channel in nitrate photolysis, but our results indicate it is as important as the NO2 channel. In contrast, at 313 nm we observe no formation of peroxynitrite, corresponding to Φ(ONOO-) < 0.26%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.