Abstract
We present an overview of a programme to understand the low-energy physics of quantum Yang-Mills theory from a quantum-information perspective. Our setting is that of the hamiltonian formulation of pure Yang-Mills theory in the temporal gauge on the lattice. Firstly, inspired by recent constructions for $\mathbb{Z}/2\mathbb{Z}$ lattice gauge theory, in particular, Kitaev's toric code, we describe the gauge-invariant sector of hilbert space by introducing a primitive quantum gate: the quantum parallel transporter. We then develop a nonabelian generalisation of laplace interpolation to present an ansatz for the ground state of pure Yang-Mills theory which interpolates between the weak- and strong-coupling RG fixed points. The resulting state acquires the structure of a tensor network, namely, a multiscale entanglement renormalisation ansatz, and allows for the efficient computation of local observables and Wilson loops. Various refinements of the tensor network are discussed leading to several generalisations. Finally, the continuum limit of our ansatz as the lattice regulator is removed is then described. This paper is intended as an abstract for an ongoing programme: there are still many open problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.