Abstract
We generalize to quantum weighted projective spaces in any dimension previous results of us on K-theory and K-homology of quantum projective spaces `tout court'. For a class of such spaces, we explicitly construct families of Fredholm modules, both bounded and unbounded (that is spectral triples), and prove that they are linearly independent in the K-homology of the corresponding C*-algebra. We also show that the quantum weighted projective spaces are base spaces of quantum principal circle bundles whose total spaces are quantum lens spaces. We construct finitely generated projective modules associated with the principal bundles and pair them with the Fredholm modules, thus proving their non-triviality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.