Abstract

Weak coin flipping is among the fundamental cryptographic primitives which ensure the security of modern communication networks. It allows two mistrustful parties to remotely agree on a random bit when they favor opposite outcomes. Unlike other two-party computations, one can achieve information-theoretic security using quantum mechanics only: both parties are prevented from biasing the flip with probability higher than $1/2+\epsilon$, where $\epsilon$ is arbitrarily low. Classically, the dishonest party can always cheat with probability $1$ unless computational assumptions are used. Despite its importance, no physical implementation has been proposed for quantum weak coin flipping. Here, we present a practical protocol that requires a single photon and linear optics only. We show that it is fair and balanced even when threshold single-photon detectors are used, and reaches a bias as low as $\epsilon=1/\sqrt{2}-1/2\approx 0.207$. We further show that the protocol may display quantum advantage over a few hundred meters with state-of-the-art technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.