Abstract

We investigate the initial state-selected dynamics of the title reaction on its ground (1 3A″) and first excited (1 3A′) triplet potential energy surfaces (PESs) by a time-dependent wavepacket propagation method, employing the ab initio analytical PESs developed by Gamallo et al. (2003). All partial wave contributions up to the total angular momentum J=140 are found to be necessary for the scattering of NO diatom in its vibrational and rotational ground state up to a collision energy ∼0.9eV. The converged initial state-selected reaction attributes viz., reaction probabilities, integral cross sections and thermal rate constants are obtained within the centrifugal sudden (CS) approximation and the convergence of the results are carefully checked by varying all parameters used in the numerical calculations. The dynamical results are compared with the other reported theoretical and experimental findings. Investigation on the energy-resolved channel-specific reaction probabilities infers that the N2 formation channel is very much favorable than the N-exchange channel. The reaction proceeds via some metastable resonances, observed from the oscillatory probability curves, which is more in the latter channel compared to the former. The effect of rotational and vibrational excitations of the reagent (NO diatom) on the dynamics is examined. We also examine the effect of isotopic substitution of N-atom (14N by 15N) on the reaction dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.