Abstract

We present a mapping between a Schrödinger equation with a shifted nonlinear potential and the Navier–Stokes equation. Following a generalization of the Madelung transformations, we show that the inclusion of the Bohm quantum potential plus the laplacian of the phase field in the nonlinear term leads to continuity and momentum equations for a dissipative incompressible Navier–Stokes fluid. An alternative solution, built using a complex quantum diffusion, is also discussed. The present models may capture dissipative effects in quantum fluids, such as Bose–Einstein condensates, as well as facilitate the formulation of quantum algorithms for classical dissipative fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call