Abstract

We have investigated the rich dynamics of complex wave packets composed of multiple high-lying Rydberg states in He. A quantitative agreement is found between theory and time-resolved photoelectron spectroscopy experiments. We show that the intricate time dependence of such wave packets can be used for investigating quantum defects and performing artifact-free timekeeping. The latter relies on the unique fingerprint that is created by the time-dependent photoionization of these complex wave packets. These fingerprints determine how much time has passed since the wave packet was formed and provide an assurance that the measured time is correct. Unlike any other clock, this quantum watch does not utilize a counter and is fully quantum mechanical in its nature. The quantum watch has the potential to become an invaluable tool in pump-probe spectroscopy due to its simplicity, assurance of accuracy, and ability to provide an absolute timestamp, i.e., there is no need to find time zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.