Abstract

Quantum walks have significantly different properties compared to classical random walks, which have potential applications in quantum computation and quantum simulation. We study Hadamard quantum walks with coins undergoing different quantum noisy channels and deduce the analytical expressions of the first two moments of position in the long-time limit. Numerical simulations have been done, the results are compared with the analytical results, and they match extremely well. We show that the variance of the position distributions of the walks grows linearly with time when enough steps are taken and the linear coefficient is affected by the strength of the quantum noisy channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.