Abstract

We study source-to-sink excitation transport on carbon nanotubes using the concept of quantum walks. In particular, we focus on transport properties of Grover coined quantum walks on ideal and percolation perturbed nanotubes with zig-zag and armchair chiralities. Using analytic and numerical methods we identify how geometric properties of nanotubes and different types of a sink altogether control the structure of trapped states and, as a result, the overall source-to-sink transport efficiency. It is shown that chirality of nanotubes splits behavior of the transport efficiency into a few typically well separated quantitative branches. Based on that we uncover interesting quantum transport phenomena, e.g. increasing the length of the tube can enhance the transport and the highest transport efficiency is achieved for the thinnest tube. We also demonstrate, that the transport efficiency of the quantum walk on ideal nanotubes may exhibit even oscillatory behavior dependent on length and chirality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.