Abstract

We calculate the quantum variance for the modular surface. This variance, introduced by S. Zelditch, describes the fluctuations of a quantum observable. The resulting quadratic form is then compared with the classical variance. The expectation that these two coincide only becomes true after inserting certain subtle arithmetic factors, specifically the central values of corresponding L-functions. It is the off-diagonal terms in the analysis that are responsible for the rich arithmetic structure arising from the diagonalization of the quantum variance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.