Abstract

Influence of gravity on the quantum vacuum of a massless minimally coupled scalar field under Robin boundary conditions on parallel plates is investigated. We introduce the detailed calculation of the volume energy for the case the gravitational background is weak in its most general form for a static spacetime. It founds that the quantum vacuum usually reacts to the gravitational field by decreasing the Casimir energy. In addition, we find sufficient conditions under which the Casimir force increases. Interestingly, the first order perturbation corrections, are present in the obtained formula for the volume energy. We show that for some specific choices of parameters, the energy is independent of Robin coefficients. Consistency with the literature is shown in some limiting cases and well-known examples are presented for both an increase or decrease in the volume energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.