Abstract

Since the early developments of quantum theory, vacuum has been recognized to be filled with irreducible zero-point field fluctuations. The corresponding very large energy density, as predicted by quantum theory, conflicts however, with observation of gravitational phenomena on macroscopic scales, a paradox also associated with the cosmological constant problem. This vacuum catastrophe has led to the common view that vacuum fluctuations should not be taken into account as a source of inertia or gravitation. Vacuum fluctuations however, produce observable mechanical effects, like Casimir forces, which are now accurately measured and agree with theoretical predictions. Vacuum fluctuations can also be shown, within the standard framework of quantum theory, to induce effects on motion in vacuum, and to lead to a contribution of Casimir energy to inertia, in conformity with the principles of relativity. Here, we advocate that paradoxes which emerge in an acute way when confronting quantum and relativity theories should rather be considered as positive hints, as they allow to raise questions about relativity of motion in quantum vacuum amenable to experimental confrontation, and also to reconsider the role of vacuum with respect to gravitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.