Abstract

Vacuum quantum fluctuations near horizons are known to yield correlated emission by the Hawking effect. In this talk, I will explain how a 1 dimensional flow of microcavity polaritons may be engineered to produce an effective curved spacetime with a black hole horizon. I will present numerical computations of correlated emission on this spacetime and show that, in addition to the Hawking effect at the sonic horizon, quantum fluctuations may result in a sizeable stationary excitation of a quasi-normal mode of the field theory. Observable signatures of the excitation of the quasi-normal mode are found in the spatial density fluctuations as well as in the spectrum of Hawking emission. I will explain how the driven-dissipative dynamics of the polariton fluid are key to observing the quantum excitation of the quasi-normal mode. Nonetheless, this observation suggests a general and intrinsic fluctuation-driven mechanism leading to the quantum excitation of quasi-normal modes on black hole spacetimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call