Abstract
We present an ultra-low temperature study (down to T=20 mK) of the nuclear spin-lattice relaxation (SLR) in the 55Mn nuclei of the molecular magnet Mn12-ac. The nuclear spins act as local probes for the electronic spin fluctuations, due to thermal excitations and to tunnelling events. In the quantum regime (below T≈0.75 K), the nuclear SLR becomes temperature independent and is driven by fluctuations of the cluster's electronic spin due to the quantum tunnelling of magnetization in the ground doublet. The quantitative analysis of the nuclear SLR shows that the presence of fast-tunnelling molecules, combined with nuclear intercluster spin diffusion, plays an important role in the relaxation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.