Abstract

It is commonly believed that it is unfavorable for adsorbed H atoms on carbonaceous surfaces to form H2 without the help of incident H atoms. Using ring-polymer instanton theory to describe multidimensional tunnelling effects, combined with ab initio electronic structure calculations, we find that these quantum-mechanical simulations reveal a qualitatively different picture. Recombination of adsorbed H atoms, which was believed to be irrelevant at low temperature due to high barriers, is enabled by deep tunnelling, with reaction rates enhanced by tens of orders of magnitude. Furthermore, we identify a new path for H recombination that proceeds via multidimensional tunnelling but would have been predicted to be unfeasible by a simple one-dimensional description of the reaction. The results suggest that hydrogen molecule formation at low temperatures are rather fast processes that should not be ignored in experimental settings and natural environments with graphene, graphite, and other planar carbon segments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.