Abstract
Quantum particles interacting with potential barriers are ubiquitous in physics, and the question of how much time they spend inside classically forbidden regions has attracted interest for many decades. Recent developments of new experimental techniques revived the issue and ignited a debate with often contradictory results. This motivates the present study of an exactly solvable model for quantum tunneling induced by a strong field. We show that the tunneling dynamics can depart significantly from the scenario in which the barrier-traversal time is zero or very small. However, our findings do not support the idea of a well-defined tunneling time either. Our numerically exact results should help in finding a consensus about this fundamental problem.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.