Abstract

The effects of coupling to a harmonic oscillator on the quantum tunneling of a macroscopic motion are studied through the influence functional formalism of Feynman's path integral method for the general coupling form factor. As an example, we consider the model in which the potential barrier is parabolic and the coupling Hamiltonian is linear in both coordinates of the macroscopic motion and of the intrinsic harmonic oscillator. The results are then compared with the exact solution obtained through the canonical transformation into normal coordinates in the limiting cases when the normal coordinates reduce to the original coordinates. We found that: (1) In the adiabatic case, i.e., when the recurrence time $\frac{\ensuremath{\pi}}{\ensuremath{\omega}}$ of the oscillator is much shorter than the transmission time through the macroscopic potential barrier, the effect of oscillator coupling can be well represented by an effective potential. The coupling enhances the tunneling probability on the whole. (2) There exists a critical energy, above which the tunneling probability is reduced because of the linear oscillator coupling. In the weak coupling limit and when $\ensuremath{\omega}\ensuremath{\rightarrow}0$, the critical energy becomes $\ensuremath{-}\ensuremath{\infty}$, so that the coupling to the oscillator always reduces the tunneling probability.NUCLEAR REACTIONS Quantum tunneling, coupling of macroscopic motion to intrinsic oscillators, semiclassical method, heavy ion fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.