Abstract

The Sachdev-Ye-Kitaev (SYK) model describes interacting fermionic zero modes in zero spatial dimensions, e.g. quantum dot, with interactions strong enough to completely washout quasiparticle excitations in the infrared. In this paper, we consider the complex-valued SYK model at initial temperature $T$ and chemical potential $\mu$ coupled to a large reservoir by a quench at time $t=0$. The reservoir is kept at zero temperature and charge neutrality. We find that the dynamics of the discharging process of the SYK quantum dot reveals a distinctive characteristic of the SYK non-Fermi liquid (nFl) state. In particular, we focus on the tunneling current induced by the quench. We show that the temperature dependent contribution to the current's half-life scales linearly in $T$ at low temperatures for the SYK nFl state, while for the Fermi liquid it scales as $T^2$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.