Abstract

We summarize recent low-temperature noise and AC magnetic susceptibility measurements on the nanometer-scale magnetic protein horse-spleen ferritin. The experiments show a narrow resonance peak at about 10 6 Hz, which is discussed in the framework of recently-developed theories of macroscopic quantum coherence and tunneling in antiferromagnets; theory and experiment are argued to agree qualitatively, though quantitative discrepancies remain. We also review the recent analysis of a rather general spin-parity effect for tunneling in magnetic systems: systems with appropriate symmetry may exhibit quantum tunneling for integer spin, but not for half-odd-integer spin, where destructive interference between different tunneling paths suppresses the tunneling. Finally, we study the effect on this spin-parity phenomenon caused by dissipation, i.e. coupling to an environment consisting of a bath of harmonic oscillators. Using the real-time, Feynman-Vernon path integral formalism, we find models where an arbitrarily small amount of ohmic dissipation completely destroys the spin-parity effect (i.e., produces as such tunneling for half-odd-integer spins as for integer spins), and others where the effect appears to disappear gradually with increasing dissipation. Suprisingly, however, there is a sense in which the spin-parity effect is preserved in both types of models: a Calderia-Leggett type of analysis shows that neither experiences any tunnel splitting of its ground state. We present simple arguments for how this intriguing paradox might be resolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call