Abstract
We study the tunneling transport properties through a system of parallel quantum dots which are coupled to Majorana bound states (MBSs). The conductance and spectral function are computed using the retarded Green's function method based on the equation of motion. The conductance of the system is 2e2/h at zero Fermi energy and is robust against the coupling between the MBSs and the quantum dots. The dependence of the Fermi energy on the spectral function is different for the first dot (dot1) than for the second dot (dot2) with fixed dot2-MBSs coupling. The influence of the Majorana bound states on the spectral function was studied for the series and parallel configurations of the system. It was found that when the configuration is in series, the Majorana bound states play an important role, resulting in a spectral function with three peaks. However, the spectral function shows two peaks when the system is in a parallel configuration. The zero Fermi energy spectral function is always 1/2 not only in series but also in the parallel configuration and robust against the coupling between the MBSs and the quantum dots. The phase diagram of the Fermi energy versus the quantum dot energy levels was also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.