Abstract

We investigate the structural and quantum transport properties of isotopically enriched $^{28}$Si/$^{28}$SiO$_2$ stacks deposited on 300 mm Si wafers in an industrial CMOS fab. Highly uniform films are obtained with an isotopic purity greater than 99.92\%. Hall-bar transistors with an equivalent oxide thickness of 17 nm are fabricated in an academic cleanroom. A critical density for conduction of $1.75\times10^{11}$ cm$^{-2}$ and a peak mobility of 9800 cm$^2$/Vs are measured at a temperature of 1.7 K. The $^{28}$Si/$^{28}$SiO$_2$ interface is characterized by a roughness of $\Delta=0.4$ nm and a correlation length of $\Lambda=3.4$ nm. An upper bound for valley splitting energy of 480 $\mu$eV is estimated at an effective electric field of 9.5 MV/m. These results support the use of wafer-scale $^{28}$Si/$^{28}$SiO$_2$ as a promising material platform to manufacture industrial spin qubits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.