Abstract

AbstractThe outcoupling of a Bose‐Einstein condensate through an optical lattice provides an interesting scenario to study quantum transport phenomena or the analog Hawking effect as the system can reach a quasi‐stationary black‐hole configuration. We devote this work to characterize the quantum transport properties of quasi‐particles on top of this black‐hole configuration by computing the corresponding scattering matrix. We find that most of the features can be understood in terms of the usual Schrödinger scattering. In particular, a transmission band appears in the spectrum, with the normal‐normal transmission dominating over the anomalous‐normal one. We show that this picture still holds in a realistic experimental situation where the actual Gaussian envelope of the optical lattice is considered. A peaked resonant structure is displayed near the upper end of the transmission band, which suggests that the proposed setup is a good candidate to provide a clear signal of spontaneous Hawking radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.