Abstract

Studies of microlasers and micromasers generally assume that at most one atom is present in the resonator and transit times are much shorter than cavity lifetimes. We use quantum trajectory simulations to investigate the behavior of a microlaser/micromaser in which multiple atoms may be present and atom transit times can be comparable to the cavity decay time. Many-atom events are shown to destroy trap state resonances even for a mean intracavity atom number as small as 0.1. Away from trap states, results for mean photon number agree with a single-atom, weak-decay theory. However the variance of the photon number distribution increases relative to micromaser theory by an amount proportional to the product of the interaction time and cavity decay rate. This excess variance is interpreted as resulting from cavity decay during the atomic transit time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.