Abstract

We present a method in which one can infer deterministic particle trajectories for quantum mechanics using just the time evolving probability density ρ = ψ*ψ and without assuming or solving any equations of motion. The approach utilizes the geometrical construction of centroidal Voronoi tessellations (CVT). In one dimension the CVT trajectories are shown to be identical to the particle trajectories of Bohm's quantum mechanics. Several two-dimensional numerical examples are given in which the resulting CVT trajectories are highly correlated with Bohm's trajectories. The method also allows the formation of trajectories for classical probability densities, for which the resulting trajectories are not, in general, the physically observed trajectories. Rather, they are hydrodynamic trajectories which kinematically depict the evolving density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.