Abstract

In the framework of the exact factorization of the time-dependent electron-nuclear wave function, we investigate the possibility of solving the nuclear time-dependent Schrödinger equation based on trajectories. The nuclear equation is separated in a Hamilton-Jacobi equation for the phase of the wave function, and a continuity equation for its (squared) modulus. For illustrative adiabatic and nonadiabatic one-dimensional models, we implement a procedure to follow the evolution of the nuclear density along the characteristics of the Hamilton-Jacobi equation. Those characteristics are referred to as quantum trajectories, since they are generated via ordinary differential equations similar to Hamilton's equations, but including the so-called quantum potential, and they can be used to reconstruct exactly the quantum-mechanical nuclear wave function, provided infinite initial conditions are propagated in time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.