Abstract

A powerful tool for studying geometrical problems in Hilbert spaces is developed. We demonstrate the convergence and robustness of our method in every dimension by considering dynamical systems theory. This method provides numerical solutions to hard problems involving many coupled nonlinear equations in low and high dimensions (e.g., quantum tomography problem, existence and classification of Pauli partners, mutually unbiased bases, complex Hadamard matrices, equiangular tight frames, etc.). Additionally, this tool can be used to find analytical solutions and also to implicitly prove the existence of solutions. Here, we develop the theory for the quantum pure state tomography problem in finite dimensions but this approach is straightforwardly extended to the rest of the problems. We prove that solutions are always attractive fixed points of a nonlinear operator explicitly given. As an application, we show that the statistics collected from three random orthonormal bases is enough to reconstruct pure states from experimental (noisy) data in every dimension d ⩽ 32.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call