Abstract

The engineering of quantum computers requires the reliable characterization of qubits, quantum operations, and even the entire hardware. Quantum tomography is an indispensable framework in quantum characterization, verification, and validation (QCVV), which has been widely accepted by researchers. According to the tomographic target, quantum tomography can be categorized into quantum state tomography (QST), quantum process tomography (QPT), gate set tomography (GST), process tensor tomography (PTT), and instrument set tomography (IST). Standard quantum tomography toolkits generally consist of basic linear inverse methods and statistical maximum likelihood estimation (MLE)-based methods. Furthermore, the performance of standard methods, including effectiveness and efficiency, has been further developed by exploiting Bayesian estimation, neural networks, matrix completion techniques, etc. In this review, we introduce the fundamental quantum tomography techniques, including QST, QPT, GST, PTT, and IST. We first introduce the details of basic linear inverse methods. Then, the framework of MLE methods with constraints is summarized. Finally, we briefly introduce recent further research in developing the performance of tomography, utilizing some symmetry properties of the target. This review provides a primary getting-start in developing quantum tomography, which promotes quantum computer development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.