Abstract
We investigate the energy distribution and quantum thermodynamics in periodically-driven polaritonic systems in the stationary state at room temperature. Specifically, we consider an exciton strongly coupled to a harmonic oscillator and quantify the energy reorganization between these two systems and their interaction as a function of coupling strength, driving force, and detuning. After deriving the quantum master equationfor the polariton density matrix with weak environment interactions, we obtain the dissipative time propagator and the long-time evolution of an equilibrium initial state. This approach provides direct access to the stationary state and overcomes the difficulties found in the numerical evolution of weakly damped quantum systems near resonance, also providing maps on the polariton lineshape. Then, we compute the thermodynamic performance during harmonic modulation and demonstrate that maximum efficiency occurs at resonance. We also provide an expression for the irreversible heat rate and numerically demonstrate that this agrees with the thermodynamic laws.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.