Abstract

In this paper, we give a pedagogical introduction to the ideas of quantum thermodynamics and work fluctuations, using only basic concepts from quantum and statistical mechanics. After reviewing the concept of work as usually taught in thermodynamics and statistical mechanics, we discuss the framework of non-equilibrium processes in quantum systems together with some modern developments, such as the Jarzynski equality and its connection to the second law of thermodynamics. We then apply these results to the problem of magnetic resonance, where all calculations can be done exactly. It is shown in detail how to build the statistics of the work, both for a single particle and for a collection of non-interacting particles. We hope that this paper will serve as a tool to bring the new student up to date on the recent developments in non-equilibrium thermodynamics of quantum systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.