Abstract

We report on a quantum thermodynamic method to purify a qubit on a quantum processing unit (QPU) equipped with (nearly) identical qubits. Our starting point is a three qubit design that emulates the well-known two qubit swap engine. Similar to standard fridges, the method would allow us to cool down a qubit at the expense of heating two other qubits. A minimal modification thereof leads to a more practical three qubit design that allows for enhanced refrigeration tasks, such as increasing the purity of one qubit at the expense of decreasing the purity of the other two. The method is based on the application of properly designed quantum circuits and can therefore be run on any gate model quantum computer. We implement it on a publicly available superconducting qubit based QPU and observe a purification capability down to 200 mK. We identify gate noise as the main obstacle toward practical application for quantum computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.