Abstract

We present a microscopic theory for quantum thermoelectric and heat transport in the Schwarzian regime of the Sachdev-Ye-Kitaev (SYK) model. As a charged fermion realization of the SYK model in nanostructures we assume a setup based on a quantum dot connected to the charge reservoirs through weak tunnel barriers. We analyze particle-hole symmetry breaking effects crucial for both Seebeck and Peltier coefficients. We show that the quantum charge and heat transport at low temperatures are defined by the interplay between elastic and inelastic processes such that the inelastic processes provide a leading contribution to the transport coefficients at the temperatures that are smaller compared to the charging energy. We demonstrate that both electric and thermal conductance obey a power law in temperature behavior, while thermoelectric, Seebeck, and Peltier coefficients are exponentially suppressed. This represents selective suppression of only nondiagonal transport coefficients. We discuss the validity of the Kelvin formula in the presence of a strong Coulomb blockade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.