Abstract

A quantum theory of retarded surface plasmons on a metal–vacuum interface is formulated, by analogy with the well-known and widely exploited theory of exciton-polaritons. The Hamiltonian for mutually interacting instantaneous surface plasmons and transverse electromagnetic modes is diagonalized with recourse to a Hopfield–Bogoljubov transformation, in order to obtain a new family of modes, to be identified with retarded plasmons. The interaction with nearby dipolar emitters is treated with a full quantum formalism based on a general definition of modal effective volumes. The illustrative cases of a planar surface and of a spherical nanoparticle are considered in detail. In the ideal situation of absence of dissipation, as an effect of the conservation of in-plane wavevector, retarded plasmons on a planar surface represent true stationary states (which are usually called surface plasmon polaritons), whereas retarded plasmons in a spherical nanoparticle, characterized by frequencies that overlap with the transverse electromagnetic continuum, become resonances with a finite radiative broadening. The theory presented constitutes a suitable full quantum framework for the study of nonperturbative and nonlinear effects in plasmonic nanosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.