Abstract

We present a full quantum analysis of resonant forward four-wave mixing based on electromagnetically induced transparency (EIT). In particular, we study the regime of efficient nonlinear conversion with low-intensity fields that has been predicted from a semiclassical analysis. We derive an effective nonlinear interaction Hamiltonian in the adiabatic limit. In contrast to conventional nonlinear optics this Hamiltonian does not have a power expansion in the fields and the conversion length increases with the input power. We analyze the stationary wave-mixing process in the forward scattering configuration using an exact numerical analysis for up to $10^3$ input photons and compare the results with a mean-field approach. Due to quantum effects, complete conversion from the two pump fields into the signal and idler modes is achieved only asymptotically for large coherent pump intensities or for pump fields in few-photon Fock states. The signal and idler fields are perfectly quantum correlated which has potential applications in quantum communication schemes. We also discuss the implementation of a single-photon phase gate for continuous quantum computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.