Abstract

A linearized perturbation quantum theory of second-order soliton propagation is developed. The theory shows that the quantum fluctuations of photon number, phase, momentum, and position at an arbitrary propagation distance are linear combinations of these fluctuations at zero distance. The evolutions of second-order soliton quantum fluctuations are evaluated and compared with the quantum-fluctuation evolutions of a fundamental soliton. Based on this theory, the squeezing effect of a second-order soliton is studied. It is shown that, like a fundamental soliton, a second-order soliton also exhibits squeezing along propagation when a proper combination of the number and phase operators is detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.