Abstract

Recent studies in vitro and in vivo suggest that flavin adenine dinucleotide (FAD) on its own might be able to act as a biological magnetic field sensor. Motivated by these observations, in this study, we develop a detailed quantum theoretical model for the radical pair mechanism (RPM) for the flavin adenine biradical within the FAD molecule. We use the results of existing molecular dynamics simulations to determine the time-varying distance between the radicals on FAD, which we then feed into a quantum master equation treatment of the RPM. In contrast to previous semi-classical models, which are limited to the low-field and high-field cases, our quantum model can predict the full magnetic field dependence of the transient absorption signal. Our model's predictions are consistent with experiments at physiological pH values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.