Abstract
The infrared fundamental intensities of benzene and hexafluorobenzene have been calculated at the MP2/6-311++G(3d,3p) level. The theoretical values are in excellent agreement with the averaged experimental C(6)H(6) results having a rms error of 15.3 km mol(-1). However, the theory badly underestimates the CF stretching and ring deformation intensities of C(6)F(6) having an overall rms error of 141 km mol(-1). The theoretical results confirm the dipole moment derivative signs previously attributed on the basis of the comparison of C(6)H(6) and C(6)D(6) derivatives and semiempirical molecular orbital results. A quantum theory atoms in molecules charge-charge flux-dipole flux interpretation of the theoretical results shows that electronic density changes for out-of-plane vibrations can be explained using a simple bond moment-rehybridization moment model proposed many years ago. However, these changes were found to be much more complicated for the in-plane vibrations involving important charge flux and dipole flux contributions for both molecules as well as contributions from the displacement of equilibrium atomic charges for hexafluorobenzene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.