Abstract

The status of the gravitational principle of equivalence is obscure on the atomic scale, where quantum processes are relevant. On the assumption that a fundamental principle ought to apply to fundamental particles, we examine the principle of equivalence in a quantum context. We treat linearized gravitational perturbations as a massless, spin-two, gauge field coupled to itself and to matter, and argue that a consistent theory of this type, based on an action principle, is impossible unless the gravitational coupling is universal. The argument derives from a set of consistency conditions connecting successive orders of the perturbation expansion. We illustrate this consistency argument for scalar electrodynamics, and prove that the scalar particles must couple to gravity with the same strength as photons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.