Abstract

We propose a scheme for quantum teleportation between two qubits, coupled sequentially to a cavity field. An implementation of the scheme is analyzed with superconducting qubits and a transmission line resonator, where measurements are restricted to continuous probing of the field leaking from the resonator rather than instantaneous projective Bell state measurement. We show that the past quantum state formalism [S. Gammelmark et al, Phys. Rev. 111, 160401] can be successfully applied to estimate what would have been the most likely Bell measurement outcome conditioned on our continuous signal record. This information determines which local operation on the target qubit yields the optimal teleportation fidelity. Our results emphasize the significance of applying a detailed analysis of quantum measurements in feed-forward protocols in non-ideal leaky quantum systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call