Abstract

Quantum teleportation via the entanglement channel composed of a two-qubit Heisenberg XYZ chain with Dzyaloshinskii–Moriya interaction in the presence of both inhomogeneous external magnetic field and intrinsic decoherence has been investigated. It is shown that the initial state of the channel plays an important role in the fully entangled fraction and the average fidelity of teleportation. It is found that when the initial system is in the entangled state |Ψ⟩ = m2|01⟩ + n2|10⟩ the corresponding average fidelity is always larger than 2/3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call