Abstract
In this paper, we show that current two different quantum channels of two three-qubit GHZ states and the six-qubit entangled state can be used for quantum teleportation of an arbitrary two-qubit state deterministically. Moreover, we propose two distinct protocols for quantum teleportation of an arbitrary two-qubit state within a three-qubit, by using a single-qubit measurement under the basis and also using a two-qubit projective measurement under the basis $$\{|+\rangle ,|-\rangle \}$$ , so as to get 16 kinds of possible measured results with equal probability of 1/4. Furthermore, the deterministic quantum teleportation of an arbitrary two-qubit states can be realized in a cavity quantum electrodynamics systems. This is unique, in that a cluster state has a maximal persistence when compared with a entangled state and it is also more robust against decoherence. Furthermore, the schemes are secure against internal and external attacks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.