Abstract

AbstractA logical approach to Bell’s Inequalities of quantum mechanics has been introduced by Abramsky and Hardy (Abramsky & Hardy, 2012). We point out that the logical Bell’s Inequalities of Abramsky & Hardy (2012) are provable in the probability logic of Fagin, Halpern and Megiddo (Fagin et al., 1990). Since it is now considered empirically established that quantum mechanics violates Bell’s Inequalities, we introduce a modified probability logic, that we call quantum team logic, in which Bell’s Inequalities are not provable, and prove a Completeness theorem for this logic. For this end we generalise the team semantics of dependence logic (Väänänen, 2007) first to probabilistic team semantics, and then to what we call quantum team semantics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.