Abstract
This survey article is concerned with the modeling of the kinematical structure of quantum systems in an algebraic framework which eliminates certain conceptual and computational difficulties of the conventional approaches. Relying on the Heisenberg picture it is based on the resolvents of the basic canonically conjugate operators and covers finite and infinite quantum systems. The resulting C*-algebras, the resolvent algebras, have many desirable properties. On one hand they encode specific information about the dimension of the respective quantum system and have the mathematically comfortable feature of being nuclear, and for finite dimensional systems they are even postliminal. This comes along with a surprisingly simple structure of their representations. On the other hand, they are a convenient framework for the study of interacting as well as constrained quantum systems since they allow the direct application of C*-algebraic methods which often simplify the analysis. Some pertinent facts are illustrated by instructive examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.