Abstract

Groups first entered mathematics in their geometric guise, as collections of all symmetries of a given object, be it a finite set, a polygon, a metric space or a differential manifold. Original definitions of quantum groups, also in the analytic context, had rather algebraic character. In these lectures we describe several examples of quantum symmetry groups of a given quantum (or classical) space. The theory is based on the concept of actions of (compact) quantum groups on C∗-algebras and viewing symmetry groups as universal objects acting on a given structure. Initiated by Wang in 1990s, in recent years it has been developing rapidly, exhibiting connections to combinatorics, free probability and noncommutative geometry. In these lectures we will present both older and newer research developments regarding quantum symmetry groups, discussing both the general theory and specific examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.